Zygmund classes in algebras of generalized functions
نویسنده
چکیده
We introduce an intrinsic notion of Zygmund regularity for Colombeau algebras of generalized functions. In case of embedded distributions belonging to some Zygmund-Hölder space this is shown to be consistent. The definition is motivated by the well-known use of the wavelet transform as a tool in studying Hölder-Zygmund regularity. It is based on a simple mollifier-wavelet interplay which translates wavelet estimates into properties of regularizations. We investigate basic properties of the newly defined subspaces as well as their application to differential equations whose coefficients and initial data are generalized functions in some Zygmund class. Problems of this kind occur, for example, in seismology where Earth’s properties of fractal nature have to be taken into account.
منابع مشابه
Geophysical modelling with Colombeau functions: Microlocal properties and Zygmund regularity
In global seismology Earth’s properties of fractal nature occur. Zygmund classes appear as the most appropriate and systematic way to measure this local fractality. For the purpose of seismic wave propagation, we model the Earth’s properties as Colombeau generalized functions. In one spatial dimension, we have a precise characterization of Zygmund regularity in Colombeau algebras. This is made ...
متن کاملEssential norm estimates of generalized weighted composition operators into weighted type spaces
Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...
متن کاملGeophysical modeling and microlocal properties of Colombeau functions
In global seismology Earth’s properties of fractal nature occur. Zygmund classes appear as the most appropriate and systematic way to measure this local fractality. For the purpose of seismic wave propagation, we model the Earth’s properties as Colombeau generalized functions. In one spatial dimension, we have a precise characterization of Zygmund regularity in Colombeau algebras. This is made ...
متن کاملZygmund regularity of Colombeau generalized functions and applications to differential equations with nonsmooth coefficients
We introduce an intrinsic notion of Zygmund regularity for Colombeau algebras of generalized functions. In case of embedded distributions belonging to some Zygmund-Hölder space this is shown to be consistent. The definition is motivated by the well-known use of the wavelet transform as a tool in studying Hölder regularity. It is based on a simple mollifier-wavelet interplay which translates wav...
متن کاملDouble Trigonometric Series and Zygmund Classes of Functions with Two Variables (communicated by Hüsein Bor)
In the present paper, we generalize Zygmund classes of functions with two variables defined by Móricz by means of modulus of continuity, and give the necessary and sufficient conditions for double sine, sine-cosine, cosinesine and double cosine series so that their sums belong to the generalized Zygmund classes. Some new results of Fülöp [1] and [2] on double trigonometric series are extended.
متن کامل