Zygmund classes in algebras of generalized functions

نویسنده

  • Günther Hörmann
چکیده

We introduce an intrinsic notion of Zygmund regularity for Colombeau algebras of generalized functions. In case of embedded distributions belonging to some Zygmund-Hölder space this is shown to be consistent. The definition is motivated by the well-known use of the wavelet transform as a tool in studying Hölder-Zygmund regularity. It is based on a simple mollifier-wavelet interplay which translates wavelet estimates into properties of regularizations. We investigate basic properties of the newly defined subspaces as well as their application to differential equations whose coefficients and initial data are generalized functions in some Zygmund class. Problems of this kind occur, for example, in seismology where Earth’s properties of fractal nature have to be taken into account.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geophysical modelling with Colombeau functions: Microlocal properties and Zygmund regularity

In global seismology Earth’s properties of fractal nature occur. Zygmund classes appear as the most appropriate and systematic way to measure this local fractality. For the purpose of seismic wave propagation, we model the Earth’s properties as Colombeau generalized functions. In one spatial dimension, we have a precise characterization of Zygmund regularity in Colombeau algebras. This is made ...

متن کامل

Essential norm estimates of generalized weighted composition operators into weighted type spaces

Weighted composition operators appear in the study of dynamical systems and also in characterizing isometries of some classes of Banach spaces. One of the most important generalizations of weighted composition operators, are generalized weighted composition operators which in special cases of their inducing functions give different types of well-known operators like: weighted composition operat...

متن کامل

Geophysical modeling and microlocal properties of Colombeau functions

In global seismology Earth’s properties of fractal nature occur. Zygmund classes appear as the most appropriate and systematic way to measure this local fractality. For the purpose of seismic wave propagation, we model the Earth’s properties as Colombeau generalized functions. In one spatial dimension, we have a precise characterization of Zygmund regularity in Colombeau algebras. This is made ...

متن کامل

Zygmund regularity of Colombeau generalized functions and applications to differential equations with nonsmooth coefficients

We introduce an intrinsic notion of Zygmund regularity for Colombeau algebras of generalized functions. In case of embedded distributions belonging to some Zygmund-Hölder space this is shown to be consistent. The definition is motivated by the well-known use of the wavelet transform as a tool in studying Hölder regularity. It is based on a simple mollifier-wavelet interplay which translates wav...

متن کامل

Double Trigonometric Series and Zygmund Classes of Functions with Two Variables (communicated by Hüsein Bor)

In the present paper, we generalize Zygmund classes of functions with two variables defined by Móricz by means of modulus of continuity, and give the necessary and sufficient conditions for double sine, sine-cosine, cosinesine and double cosine series so that their sums belong to the generalized Zygmund classes. Some new results of Fülöp [1] and [2] on double trigonometric series are extended.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008